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1 Motivation for the Research

It is widely recognized that the cost of software is far outstripping that of hardware,
and that software repair, improvement, and enhancement typically consume the major

portion of the cost. This is true even in light of recent advances in languages and
tools, which are more than offset by the increasing size and complexity of software
systems.

There are several reasons for the high cost of modifications. One is that system
requirements may be wrong or imprecise.,Research on rapid prototyping is expected
to help in this regard. Another reason is that a system implementation may not meet
its requirements. Approaches to this problem include testing, formal verification, and
runtime assertion checking.

However, the dominant source of cost is system modification, which is necessitated
by changes in requirements and in the support environment. If the design or the
implementation -f a large system is changed, the incremental cost of an individual
change can be unacceptably high because a seemingly minor change to one part of a
system can have unforeseen and subtle consequences in another part.

Some changes always will have far-reaching effects. The root cause is the imple-
mentation goal of good performance which usually dominates and conflicts with the
goals of maintaining clarity and structure. In this research, we have devised formal
techniques that can substantially reduce the cost of modifying large systems, espe-
cially those systems that have been optimized for performance. The techniques have
been implemented and apply to a large class of sequential systems containing such
objects as modules, procedures, and variables.

The ways in which objects can be related is limited at present, reducing design and
implementation flexibility. We believe that our results can be generalized to handle
powerful parameterization mechanisms, object-oriented paradigms. and concurrency.
However, this has not yet been done. ,,

2 Our Basic Approach

A formal system development involves the two transitions shown in Figure 1. First,
an informal description of requirements is transformed into a formal statement of what
the sytem is intended to do. Second, that formal specification is transformed into an
implementation that describes how to perform the specified computation. It is the
what-to-how transformation that is the subject of this research. Henceforth, we use
the terms "structural design" and "detign- to refer to what-to-how transformations.

For managing the evolution of a system, the crucial difference between a specifica-
tion and an implementation is not the difference in concreteness. It is the complexity
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Figure 1: Steps in a formal system development

of the interconnections among system objects. An implementation, especially an ef-
ficient one, will invariably be highly interconnected and somewhat unstructured. On
the other hand, performance is not an issue in specifications and, hence, they tend to
be modular.

Therefore, our approach to change focuses on the formal documentation and anal-
ysis of large-system structures. In particular, we formally record the structural design
of a system during its development, and then use the record to:

1. Explain system organization. A formal record of structural design decisions
can explain how abstract objects and interactions are evolved into a concrete
implementation. This information is needed to make changes to a system.

2. Control implementation connectivity. Structural invariants can be en-
forced automatically. It is decidable whether or not a structural design and its
implementation are consistent under certain reasonable assumptions.

3. Find the effects of changes. If the structural design or implementation of a
system is changed, new bugs can be introduced. The number of new bugs can
be greatly reduced if developers are provided with an accurate assessment of the
effects of a planned change. The semantic effects of a change can be isolated in
a system design or implementation thr ,t an analysis of (i.e., proofs about)
its structure.

3 Summary of Main Results

Our research has resulted in four major results:

1. The first formal technique (,r specifying implementation structures. Existing
formal specification languages can describe the structure of a specification, but.
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not the intended structure of an implementation. A specification of implemen-
tation structure is needed to explain and enforce structural design decisions,
the key to managing complexity in large systems.

2. A new method for reasoning about changes to a system. The problem of reason-
ing about changes was originally formalized by this author in his Ph.D. thesis
[11]. That solution used a Hoare-style logic and had the practical drawback of
undecidability. We have devised a radically new approach to the problem that
involves a structural approximation of the semantic effects of a change. An
approximate solution is intuitively appealing and it can be found in a decidable
theory.

3. A new technique for controlling interconnections in a system implementation
using standard program analysis and formal verification technology. The ques-
tion of whether a structural specification is consistent with an implementation
is decidable under certain reasonable assumptions.

4. An innovative prototype system - called PegaSys - that uses pictures as for-
mal documentation. To our knowledge, PegaSys is the first system to manipu-
late nontrivial design structures in ways that take into account their semantics.
There are over a dozen commercially available interactive diagramming systems
that have proved successful in industry but all lack semantics.

Two papers are attached to this final report as appendices. They explain the
points above in some detail. The remainder of this section summarizes our results in
the three areas.

3.1 Structural Designs

To illustrate what is meant by structural design, consider the following diagram:

A C B

A superficial reading of this diagram might be that boxes A and B are abstract
operations and the bold line is a communication channel c between them. Altholigh
this reading gives a general idea of what is meant by the diagram, it is much too
imprecise for our purposes. Here are some properties the diagram might indicate:



" Direct communication: Operations A and B communicate directly through
channel c when they are executed.

* Indirect communication: Operations A and B communicate indirectly through
intermediaries via channel c. Indirect relationships rp ult from the cumulative
effects of procedure calls on nonlocal objects and on objects passed as parame-
ters.

* Completeness: The only way that A and B communicate is through channel
c. That is, there are no other channels between A and B.

A formal description of the above property is needed so that there is no ambigu-
ity about what is intended and so that analysis based on the specification will be
meaningful.

The formal structural specification of a system consists of multiple levels of detail,
each level containing abstractions appropriate to that level. Most abstract objects are
represented naturally as primitive procedures or variables which are subsequently im-
plemented in terms of one or more similar objects. On the other hand, most abstract
connections are expressed as derived concepts defined in terms of more primitive con-
nections. Abstract connections are used to partition a system into manageable parts
that interact in well-defined and predictable ways.

Next. we present three concrete examples of structural design concepts, defined
in terms of the following primitive concepts of our logic:

mod(P, x) means that procedure P modifies variable x directly or indirectly through
a called procedure. The mod relation is used for global program optimization
in compilers.

x I= y means that information flows from a variable x to a variable y under pro-
cedure P provided a change in the value of x can be conveyed to y when P
is executed. For example, the binding of an actual parameter a to a formal
parameter x causes a flow from a to x. 1

==*f, ==*b, =#-, stand for forward, backward, and lateral information flow, respec-
tively. Forward and backward flows model the interprocedural variable bindings
that result from a direct or transitive procedure call. Lateral flow is intrapro-
cedural, involving local variables of the same procedure. Henceforth, x ='. y is
taken to mean that (x, y) is a forward, backward, or lateral flow.

'Classical information theory, Shannon [13] and others, is concerned with the amount of infor-
mation generated by a particular event. We are interested in the simpler qualitative question of
whether any information is generated by an event. In other words, we are interested in whether a
change affects an object at all, not in how much it affects it.
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callByVR(P, Q,plzsi) models a procedure call from procedure P directly to proce-
dure Q with an arbitrary number of actual-formal parameter pairs (plist) having
a value-result semantics.

Types var and proc are used to denote variables and procedures, respectively. Vari-
ables of type uvar are used to specify the different value assignments to an ordinary
variable. The predicate versionOf(x,y) tells whether a version variable x is associated
with a variable y and the predicate varOf(x,P) tells whether version variable x is
associLeu tth procedure P.

Example 1 Protecting a variable. It is often useful to restrict access to a variable
or to restrict the ways in which a variable can be used. For instance, we mav want
' o allow procedures to read a certain variable but not allow them to write it. This is
easily formalized using the predicate

ReadOnly: var x proc --- bool

which is defined by
defReadOnly(x, P) = mod(P,x)

for x in var and P in proc. For a given variable v., we can write

(Vp: proc)ReadOnly(v, p)

to indicate that no procedure p can modify v. CE

Example 2 Restricting variable interactions. A set of variables can be partitioned
into independent subsets using a predicate which says that a variable x is completely
independent of a variable y if and only if a change in the value of y has no effect on
the value of x. This predicate

IndependentOf: var x var -4 bool

is defined, for x and y in var, by

IndependentOf (x, y) 4-f=

(Vi, : vvar)(VR: proc)[versionOf(i, r) A versionOf( , y) D -'(p := >)]

If a variable x is independent of a variable y, we know that y cannot use x as an
intermediary to affect some other variable or procedure. El



Example 3 Interprocedural channel. Suppose that we want two procedures to com-
municate through a specific variable. We say that a variable x is a channel from
procedure P to procedure Q iff information flows from P to Q through x. This is
captured by

ChannelTo: proc x proc x var --+ bool

which is defined by

ChannelTo(P, Q, x) de
(3 , y, z: vvar)(3R: proc)[versionOf(i., x) A varOf( ', P) A varOf(-, Q) A

I f A R R :A V R j R
A " ) V= (==> ib A i =f -) (=#> ib A = => )

for P and Q in proc and x in var. Since x is an interprocedural channel, we need not
consider lateral flows whose purpose is to link interprocedural flows. We also rule out
the possibility of a forward-backward flow, since this would make x a channel from
P to itself. M

Example 4 [nterprocedural partitioning. Assume that a procedure .4 is not intended
to be connected to a procedure B, which we express by

-'ConnectedTo(A, B)

The ConnectedTo relation says that, for any procedures P and Q, there is a transitive
call from P to Q. or a transitive information flow from a variable referenced by P to
one referenced by Q, or both. The predicate

Calls: proc x proc --+ bool

is defined recursively by

Calls(P, Q) dkf

(3p: plist)[callByVR(P, Q, p) V
(3R: proc)[callByVR(P, R, p) A Calls(R, Q )j]

where plist is a set of possible actual-formal pairings. The predicate

ConnectedTo: proc x proc -, bool

is defined by

ConnectedTo(P, Q) d4-f

Calls(P, Q) V (3i, :vvar)(3R:proc)[varOf(. , P) A varOf( , Q) A ci A

Notice that information may flow from P to Q as the result of a transitive call from
P to Q (in which case R is P), or R can be a parent of P and Q that transmits a
return flow from P to Q. D
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PROCEDURE Addlnc(sum,i)
ASSERT call(Add,(sum,i)) AND call(Inc,(i))
END:

sum i Addlnc
PROCEDURE Add(a~b)
ASSERT affects(aa) AND affects(ba) / \
END: /

PROCEDURE Inc(z) a -- b--*- b 1 z Add -,---Inc

ASSERT call(Add,(z,1))
END:

(a) (b) (c)

Figure 2: A low-level design: (a) textual representation, (b) diagram of implicit
information flows, and (c) graph of call relationships.

3.2 Reasoning About Changes

It is undecidable in general to determine the exact behavioral effects of a change, but it
is possible to obtain a precise, conservative approximation by formalizing the problem
in terms of structural concepts. In particular, we say that a change to an object x
affects an object y if the pair (x, y) is in the transitive closure of the information
flow relation ==>. Unfortunately, information flow is not transitive in the usual sense.
That is, if there is flow from some object x to an object y and from y to an object
z, there is not necessarily flow from x to z. As a consequence, the usual notion of
transitivity gives a crude approximation of the effects of a change. To obtain a more
accurate approximation of the true transitive flows (i.e., those that would occur when
the system is executed), it is necessary to decompose the concept of information flow
into the three special flows and to provide axioms for composing the three flows to
determine the transitive closure of the information flow relation.

As an illustration of why the simple approach will not work, consider the low-level
design presented in Figure 2a. The design consists of several objects: procedures
AddInc, Add, and Inc, and variables sum, i, a, b, and z. Parameters are transmit-
ted using a value-result semantics. The purpose of procedure AddInc, which is not
specified in the figure, is to add the initial values of i and sum and return the result
in sum: it also increments the initial value of i and returns the result in i.
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We are interested, for instance, in whether or not a change to the value of variable
sum can affect the value of variable z. Since two objects can interact indirectly
through any number of intermediaries, the question is not whether sum b z hut
whether the pair (sum, z) is in the transitive closure of ==; on the set of all variables.
written sum ; z.

We cannot form the transitive closure of ==* until the information flow relation-
ships implicit in the assert statements are made explicit. The assertion for AddInc
savs that it makes two calls, one to Add and one to Inc; the ordering of the calls is
unspecified for the moment. The assertion for Add says that the initial values of a
and b affect some future value of a. The assertion of Inc specifies that it calls Add.

Figure 2b depicts the information flow relationships implicit in this structural
description. Flows not in the figure are assumed to be invalid, since we found it
useful to have a closed-world assumption [12]. For example, we assume there is rio
flow in Add from a to b, thereby making b a read-only variable of Add. Procedure calls
noimally cause bidirectional flow between actual and formal parameters. However.
the two calls to Add cause only unidirectional flow from actual parameters i and I to
formal parameter b. since the value of b is unchanged by Add.

Returning to our original question about the possibility of flow from sum to -. we
can use the diagram Figure 2b to trace the information flow path

sum ==. a:=: (1)

from which we can infer that sum :=> z. This kind of reasoning can be formalized
in terms of the usual transitivity axiom.

Unfortunately, this simple analysis is much too conservative. A change to the value
of sum cannot affect z if there is no execution sequence for which sum ===> z. We can
establish that there is no such sequence in our example specification by relating the
information flow relationships in the specification to its calling relationships, which
are illustrated in Figure 2c. Consider the call from AddInc to Add. Procedure Add
contains no procedure calls and it does not allow the value of formal a to affect the
value of its other formal b. Therefore, the call from AddInc to Add can only affect
the value of sum by means of the path

sum ==> a => sum

Procedure AddInc also calls Inc with actual parameter i. But since i is never affected
by sum (by the closed-world assumption), the call from Addlnc to Inc cannot result
in a flow from sum to z; from this we can conclude that the call from Inc to Add
cannot as well. This completes an informal argument that -(sum = ' --).

To formalize this kind of reasoning, a new axiomatization of the transitivity of
information flow was developed in which a transitive flow is inferred from two indi-
vidual flows only when there is a causal relationship between the individual flows.
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That is, we establish that some change in the value of variable x in the flow x ==y
causes a change in the value of variable z in the flow y ==* z before we can infer the
transitive flow x = z.

Let T denote a logical axiomatization of transitive information flow that takes into
account the causal relationships among individual flows. In addition, let S denote
a structural specification, and let 2 denote axioms for inferring the flows implicit
in specifications. To reason about changes. we have defined T and I so that the
transitive closure of . namely.

{(x,!/)ITuIUS v

contains the true information flows in S for systems containing the basic structural
features discussed at the beginning of this section. Moreover. the derivation of the
closure should terminate for any specification S. The transitive closure with respect
to a given specification S serves as the basis for answering questions abouL changes
to S.

3.3 Controlling Connections Through Proofs

Given a structural specification S of a system, we would like to know that S accurately
describes its implementation. This too is undecidable in general, but again we can
obtain a good conservative approximation.

The proof strategy blends program flow analysis and formal program verification
techniques. It suffices to must show that each level in a structural design hierarchy
is a logical consequence of those primitive structural relations that are true of the
program. Objects in a specification are connected to program objects with a mapping
similar to the one in Hoare [7]. The primitive relations satisfied by a program are
derived from the program automatically with a slightly modified version of standard
program flow analysis techniques [1]. The flow analysis is conservative: for example,
all predicates in the program are treated as uninterpreted symbols. Given the derived
primitives and the mappings, the problem of consistency can be reduced to proving
one or more logical implications in a typed first-order logic, where a type is a finite
and fixed set.

3.4 The Initial PegaSys Prototype

PegaSys is a display-oriented, interactive environment that uses intuitive graphical
pictures as formal documentation to facilitate life cycle activities for large software
svstems. PegaSys has been designed to offer the advantages of mathematical rigor
even though users interact with it through pictures. For example. PegaSys provides
standard graphical operations. via a irouse and pointing device, for manipulating



pictures. while at the same time enforcing semantic constraints on these operations
sufficient to guarantee that they make sense in terms of system design. As a re-
suit. PegaSys users can document and explain system designs in a highly visual arid
intuitive manner.

Because of their intuitive appeal. pictures have been used frequently by computer
scientists in textbooks. professional publications, and on blackboards to explain sys-
tem structures. However. pictures tend to be inadequate as a means of documentation
because the contain imprecise concepts that can be confusing and misleading. For
instance, the same icon is often used to represent a process. a subprogram, and a
data structure, all in the :ame picture. Similarly, the same arrow may represent ti'e
flow of d-.ta to a subprogram, the flow of control to a subprogram, or the writing of
data to a daLa structure, all quite distinct concepts. Failure to make such distinctions
might be satisfactory in a high-level design, but is not acceptable for detailed design
refinements that serve as the basis for system evolution.

The goal of the PegaSys svstem research has been to demonstrate that it is pos-
:.ible to effectively support the formal specification and analysis of implementation
structures. The approach has been to make use of pictures to simplify specifications
and to take advantage of decidability to eliminate the need for user involvement in
proofs.

The initial PegaSys prototype was extremely effective in creating the illusion that
logical formulas did not exist, thereby providing the advantages of formal methods
but not the drawbacks. The PegaSys prototype deals with pictures that represent
direct connections among such objects as variables, types, procedures, and modules
in sequential systems. As explained in an earlier section. we have since extended
our specification technique to include indirect relations, Lower-level objects. such as
statements and (xpressions. are not modeled. A system design is a hierarchy of such
pictures, and a PegaSys user must specify the mapping between levels in a design.
Given this mapping, PegaSys can prove that the design levels are consistent with each
other. This prototype also supported programming in Ada and connected pictures to
Ada programs.

We are presently planning a new implementation of PegaSys that incorporates the
advances we have made in its underlying technology. The initial PegaSys prototype
was ritten in in Interlisp-D on (now obsolete) Xerox 1100-series personal computers.
Thc .;v implementation would be better engineered, written in portable Common
Lisp on Sun workstations, and vould make use of standard components whenever
possible. We believe that the planned version of PegaSys would represent an impor-
tant step in the introduction of formal methods in the engineering of real software
svstems.
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4 Related Research

I. The PegaSys system is unique in its use of graphics to mask details in the formal
design and proof of structural system properties. Other graphical systems have
very impoverished structural design languages (see below) and do not perform
a semantic analysis of designs. An interesting graphical system for behavioral
specification has recently been developed by Harel [3].

2. Previous work on structural design languages falls into the following categories:

" Programming languages. Block structure, import/export lists, and
encapsulation mechanisms have been used to specify referencing environ-
ments in several programming languages, including Euclid, Mesa. Modula-
2, Ada. and PIC/Ada. These features describe access to objects but not the
use of objects. Furthermore, they deal solely with program-level objects.
Module interconnection languages have essentially the same drawbacks.

* Program design languages. Over a dozen structural design languages
have been developed since they were made popular by Yourdon, De Marco,
and others; see [9] for a survey. These languages typically represent pro-
gram structure as a directed graph in which nodes denote program objects
and arcs denote structural relations among objects. Relations in a graph
are low level and not formally defined. Moreover, there is no mechanism
for properly defining new relations; thus, it is not possible to formalize
many common design abstractions.

" Formal specification languages. These languages, e.g, Anna [8], Larch
[6], and OBJ [5], focus on behavior, not structure. Some contain a form of
import/export list.

* Derivational techniques. Program transformations describe how to
transform a given structure into a different and possibly more efficient
structure. A related technique presently gaining much attention involves a
use of constructive type theory in which programs are correct by construc-
tion. Both approaches have been applied primarily to algorithm design.
In contrast, our approach is focused on how algorithms are put together
to form a system.

3. Previous work on the analysis of system changes is either at too low a level or
limited by undecidability:

r Program inspection. In practice, the dominant way of determining the
-'ffects of a change is for the human to interpret various relations extracted
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from the program itself. The relations include direct (cross-reference) re-
lations and transitive relations about calling relationships and data flows.
Numerous tools have been developed which derive such relations, but they
are used primarily for other purposes, such as program optimization [2],
the detection of simple errors [4], and documentation [101. We are not
aware of any existing tool that provides a systematic way of combining the
relations to determine the effects of changes.

Semantic proofs. In the context of formal program verification, Moriconi
[11] developed a general approach to reasoning about the semantic effects
of changes. Given a functional specification of a system and a Hoare-style
logic, the method determines what formulas must be proved to isolate
the exact semantic effects of incremental changes. Unfortunately, these
formulas are in an undecidable theory, and experience indicates that they
cannot be proved without substantial human assistance. Consequently,
the approach is impractical for everyday use.
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Visualizing Program Designs
Through PegaSys

Mark Moriconi and Dwight F. Hare, SRI International

T his article is an introduction to that interactions are in terms of icons
many of the interesting features in pictures. For example. formal prop-

of Pega.Sys, an experimental system erties of a program are described by
that encourages and facilitates extensive standard graphical operations on icons
use of graphical images as formal, ma- rather than by sentences written in a
chine-processable documentation. Un- formal logic.
like most other systems that use graph- Excerpts from a working session
ics to describe programs, the main with PegaSys are used to illustrate the
purpose of PegaSys is to facilitate the basic style of interaction as well as the
explanation of program designs. three PegaSys capabilities.. We de-

A program design is described in scribe the key ideas behind PegaSys
PegaSys by a hierarchy of interrelated elsewhere. Z. -

pictures. Each picture describes data

PegaSys is concerned and control dependencies among such Background and related work

more with explaiing entities as "subprograms," "pro-
cesses," "modules," and "data ob- Pictures have been used extensivelv

prOgram design than jects," among others. The dependen- by computer scientists in textbooks,
describing programs, cies include those represented in professional publications, and on

and offers more flowcharts, structure charts. dataflow blackboards to explain dependencies
extensive support to diagrams, and module interconnection in programs. Although pictures may

programming in the languages. Moreover, new abstrac- be quite perspicuous, they have tended
tions can be defined as needed. to be inadequate as a means of doc-What is particularly interesting umentation. One reason is the use of

graphical systems. about PegaSys is its ability to: (1) imprecise concepts that result in pic-

check whether pictures are syntactical- tures that are confusing and easily
ly meaningful, (2) enforce design rules misinterpreted. For example, the same
throughout the hierarchical decompo- graphic symbol is often used to repre-
sition of a design, and (3) determine sent a process, a subprogram, and a
whether a program meets its pictorial data structure, all in the same picture.
documentation. Much of the power of Similarly, an undifferentiated arrow
PegaSys stems from its ability to repre- might represent the flow of data to a
sent and reason about different kinds process, the flow of control between
of pictures within a single logical subprograms. or the writing of data
framework. This framework is trans-
parent to PegaSys users in the sense tThsarticle sacondensed versionofa aoercon-

tamed n a technical report. 1 Because of soace
limitations. ve nave removed many ot the oic~ures

Programminq Environment for th'e Garhical that describethed esignoftheexamolesvstemae-
Analysis of SYStems. velolea during tle session.

72 ,)0 , tz, o4v8oo.,X)so, W :'., EEE CCMPUTEP



into a data structure, all quite distinct The presence of a logical representa- the practical drawbacks of traditional
concepts. tion for a picture provides a basis for approaches.

While formal documentation does redcring about the pictn. In addi- A related system that deals with pro-
imprecision, its tion to checks for syntax errors, two gram dependencies is the PECAN sys-

adnotage erfr thie tother sorts of syntactic analysis of pic- tern. 14,15 PECAN provides multiple
advantages have tended to be out- tures have been performed by previous "views" of a program by extracting
weighed by the difficulty of construct-

systems. The first involves the hierar- dependencies directly from a program
ing and understanding it. Moreover, chical refinement of a picture. If we and then displaying them graphically.

fraly ctume enion hama- think of a picture as a graphlike A similar, albeit nongraphical, ap-
quaen capture depndencis ng diagram, a node in a diagram may be proach at the level of specifications is
components of the program it is in- replaced by a diagram provided that described in Swartout. 16 The ap-
tended to describe. An understanding the replacement preserves the connec- proach taken by PegaSys differs in
of such dependencies is crucial through-
out the software life cycle, especially dvity of the original diagram. Example that the program designer is responsi-

becomes in- uses of this idea can be found in Davis ble for describing a program in terms
draingly m e dffict tand Keller, and Rich and Shrobe.3 of the abstractions used in its concep-
creasingly more difficult to glean from

a program as it increases in size and The second sort of analysis concerns tualization. This approach is based on

complexity. the relationship between a picture and our belief that it is difficult, if not in-

In light of these observations, possible, to generate these abstrac:ions

PegaSys attempts to take advantage of from the f'ral program.

pictorial communication in describing Other related systems that make ex-

data and control dependencies while, Pictures in PegaSys describe how tensive use of graphics to describe as-

at the same time, maintaining the ad- algorithms and data structures fit pects of programs fall into two major

vantages of mathematical rigor, together to form the design of a categories. First, there areanumber of

PegaSys is differentiated from pre- larger program, systems for "animating" dynamic
program execution, a good example of

vious graphical systems by its wider which is the Balsa system. 17 Balsa cre-
range of representation and analysis ates simulations in which sophisticated
and its more extensive support for graphical representations of an algo-
programming in the large. Previous the program it is intended to describe. rithm and its data structures are con-
work most closely related to PegaSys If a picture is not executable, it is im- tinually updated throughout the exe-
is concerned with representation and portant to verify whether it accurately cution of the algorithm. There are other
analysis techniques. We review this describes the program. For example, examples of animation systems. 17--
work and then describe related the flow of control in a program can be The second category is concerned with
systems. determined purely syntactically if we "visual programming," i.e., program-

For a system to perform any sort of assume that conditional control paths ming by spatial arrangement of
meaningful analysis of a picture, it may always be executed. Similarly, the icons. :3-2' Both kinds of systems have
must maintain a logical representation "uses" and "requires" relations in tended to focus almost exclusively on
of the picture. A number of formal- module interconnection languages can programming in the small-that is, on
isms have been developed that have, or be verified using type-checking tech- individual algorithms and data struc-

easily could have, a pictorial render- niques. 12 In contrast, PegaSys addi- tures. Pictures in PegaSys, on the
ing. Examples are flowcharts, 4 struc- tionally places semantic constraints on other hand, describe how algorithms
ture charts, 5 pictographs, 6 dataflow design refinements and programs. and data structures fit together to form
diagrams (surveyed in Davis and One such constraint deals with the the design of a larger program.
Keller 7 ), plans, 8 and module intercon- logical consistency between a picture
nection languages.9- Z All of these for- and the program it is intended to de- Getting started
malisms capture data and control scribe. Traditionally, program verifi-
dependencies, typically down to exe- cation efforts have employed general Figure I shows a bitmap display

cutable program fragments. Pictures methods 'for establishing the logical connected to a Xerox personal com-
in PegaSys describe what we believe to consistency between a formal specifi- puter." Screen real estate is divided
be the important design concepts in cation and a program. 13 The PegaSys
these formalisms, plus other concepts verification procedure is more special- peaSys s ,m'ementea ,n ,nteriso-o ana runs

as well. ized and simpler, and does ,ot have on Xerox 1100-senes oersonal comnouters.
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Figure 1. +i-,evel in- broadcast" netwo.-rk , ocumenation- herah.,
into adjacen.g.t , nonove--apping rectan - --.the first level.of the pictre+ierrch gresses, details of t e ew.a

irlue of Piscreein a sae hsi ypitnadpcue r aiu h vrl broadcast network downenato torrcydo edjc. by poinn wie he lt te b i e n pst level. t the f eswon the

smlal windos aldowndw. the ee fogt-an anfedback.o rosaperih e omen o a fcsangl n host whe

side are mns onteptnomangax commands romp sendweinthed lorlefstucor- muTileel essin and wimplteentation

each of which may be selected by point- ner of Figure 1. is reused several times in the overall
ing at it with the mouse. The black strip The example session used to illus- network. The network was imple-
at the top of each window contains the trate aspects of PegaSys is concerned mented in the Ada programming lan-
window's name. The name of a win- with the development of a realistic guage-9 (using PegaSys) and subse-
dow is intended to be suggestive of its broadcast network. It is not necessary quentlv run on a Data General %1%
contents. For example, the name to understand the details of the net- 10000 computer.
"iNetwork: LevelI" indicates that the work or its implementation in order to
contents of the associated window is get a "ifeel"~ for the capabilities being The meaning of a picture

demonstrated. Particularly germane

-Our liso~ay mnar'ageerrt strategy s oatterrid aspects of the example network are ex- A crucial aspect of the PegaS, s
directly alter he raing strategy usean Ceaar. 1 plained as needed. As the session pro- design is its treatment of a picture as
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both a graphical and a logical struc- V . -

ture. These structures affect user in-
teraction with Pe2aSvs in several im-
portant ways.

Dual interpretation of pictures. A ComroentmrLin • ii wh9

picture is represented as a graphical
structure composed of icons and their I me which R

properties, such as size and location. . . . . .

Icons in a picture correspond to predi- .
cates in the underlying logical repre- . ..
sentation of the pictu;e. This logical - --- - -- .-'.,..-. - . " --- _-- - ..- - - -
structure captures the computational M_.
meaning of a picture. each predicate in
this structure denotes a computational
concept expressed by the picture. . - .

The picture shown in Figure I con- Figure 2. Explanatory text may be associated with computationaily meaningful
tains several icons. four ellipses, a rect- icons.
angle, several arrows, and several
character strings.* These icons denote
several concepts about the example Line and read values of the same type passive entity is determined by its

network. Each of the four hosts in the from the Line module. membership in a defining relation.

network is modeled as a process (indi- This statement about the network is An example of an active entity is pro-

cated by an ellipse); the communication represented in PegaSys by a conjunc- cess (Host!), and an example of a

line by a module (indicated by a dashed tion of the predicates passive entity is Type tpki). The term

rectangle); and a packet of data by a process (Host]), process (Host2), entity refers to both kinds of entities.

type (indicated by a label on arcs).t In- process (Host3), process (Host4), A relationship among entities, such as

terrelationships among hosts, packets, module (Line), Type (pkt), specified by the Write relation, is

and the line are described by the write (Hostl, Line, pkt), called an interaction.

"write" relation (denoted by the letter Read (Host], Line, pkt) Entities and interactions specified
W on arrows) and the "read" relation with similar Write and Read predicates in pictures correspond to either
(denoted by R). involving Host2, Host3, and Host4. primitives of the form calculus or

At a first approximation, the picture Notice that every predicate corre- predicates defined in terms of the
says that the broadcast network con- sponds to a different icon in Figure 1. primitives. The primitives were care-
sists of four hosts that communicate Purely cosmetic changes to a picture, fully chosen to facilitate the defini-
by means of a line. More precisely, such as an adjustment to the size or tion of new concepts. 2
processes named Host l ,...,Host4 write location of an icon, do not require up- A brief summary of the primitives
values of type pkt into a module called dates to the logical representation of will suggest the general kinds of con-

the picture. cepts that can be expressed by pictures
The logic in which pictures are rep- in PegaSys. Active entities are spec-

resented is called the form calculus. A ified by "subprogram," "process,"
syntactically correct picture is said to and "module" relations. We have

'Note mhat type ot is represented ty text in me describe the form of a program and is chosen this relatively course grain in an
lower ef rf the Picture ratmer man oy an icon if represented by a well-formed formula attempt to capture the salient aspects
Pegasys ooes hot lave an atloroortate icon for a
conceot. :e :..wventton is to disotay its logical of the form calculus. of the design of a program. as opposed
earesentat~on as text. The foilowing terminology will be to the details of particular algorithms.

adopted to refer to components of a Passive entities are specified by a
'A process seQuentialy executes a series of ac. picture. Active entities may initiate ac- "name" relation and by "simple
tions that may oroceed in carallel with actions of
other orocesses: a modules a collection of one or tions that create, destroy, or transform type" and "structured type" relations.
more logically related entitles: and a rte is a. data objects (variables); the data ob- A name is used to refer to the object
Possibly structured. value set- The line is not
modeeld as a orocess oecause ts acons are initi. jects themselves are called passive en- and a type to denote a (possibly struc-
ate by hosts tities. The existence of an active or tured) value set. The manipulation
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Networic Level Ie
Edit Text

. ". - Edit Picture
" ."" - Hierarchy

Program
citst! Host2 Hoat3 Host4 Clear

Resize
S.Clock Graphical manipulation of pictures.

Alar Graphical manipulation of a pictureW R Lisp
W " R W R , W R Exit depends upon a one-to-one mapping

: pkt J k pLkto u between computationally meaningful
icn ad ppkttte. An

Edit icons and predicates. An icon and its
Verify associated predicate denote the same

, -Line Refine Level
--,- ... - ..... - - ......... -- ----- ----- Delete Level concept.

-:7- -.... Save Perhaps the simplest example of

Draw how PegaSvs takes advantage of this
Type(pkt) Refine mapping concerns the selection of a

End Refine concept, which is done by pointing at
- -View the appropriate icon. For example.

2,- ee,-cratch positioning the mouse to point at theA Entity ellipse labeled Host 1 in Figure I and
.Add Rel. clicking (depressing and releasing) a

-;., . :. .'.?L -.. .2 .. { -- i" - " .' ... 2.. . .- '' .D elete

. Disola. button on the top of the mouse
,ot2 Hos3 .. t4 results in selection of the predicate

Expand Icon
pkt -.. pkt Iconic form process (Host]).

H.t Show Rol3. Another example concerns the con-
Show Text

. ... ... ..-:,.. Clear., _ struction of picures. Pictures are con-
Redlsp ay structed by using a series of graphical

: .,pkz . " -o pkt Iopkt ne De operations on the display that have the
.4 -.0 40 maa a a . , . ,.. ; 4iw, , icons twofold effect of building a graphical

- Lin structure and a corresponding formuia
in the form calculus. Each operation. . involves the selection of a concept

Type(pkt) - - . from a menu followed by its placement
.- at a location on the screen. An icon is

associated automatically with most
Figure 3. Creation of a level and selection of the line for refinement, concepts. If a concept must be named,

the user must enter a name for it a±nd
PegaSys will size the associated icon

and sharing of data objects are spec- pop-up comment will appear on the relative to the size of the name. Place-
ified by means of primitive interaction display until the user releases the but- ment is done by pointing. Layout ad-
relations that capture general notions ton. Figure 2 shows the pop-up corn- justments may be made by pointing at
of data object declaration, data object merit for the line module. Given this the desired icon (selection), pointing at
visibility, aliasing of names, modifica- and related features of PegaSys, the the destination location, and clicking a
tion of the value of a data object, and best way to gain an understanding of button on the mouse. PegaSys reposi-
accessing the value of a data object. the pictures presented here is by means tions the selected icon at the specified
There are also primitives for modeling of an interactive dialog with PegaSys. location, readjusting related icons
(synchronous and asynchronous) in- (such as connected arrows) as best it
terprocess communication and ordi- can.
nary transfer of control. See reference
3 for details. Manipulation of pictures Logical constraints on graphical

manipulations. Both syntactic and
Finding out about what is not in a Interactions with PegaSys are in semantic constraints are placed on

picture. A picture may be augmented terms of icons. However, graphical graphical manipulations. An example
with explanatory text. In particular, operations on pictures are restricted by of the former concerns the construc-
text may be associated with any corn- logical constraints imposed by the tion of pictures. While pictures are
putationally meaningful icon. If the form calculus. These constraints are constructed by means of standard
user points at an icon and presses a intended to ensure that graphical oper- graphical operations, the form calcu-
button on the mouse, the associated ations make sense computationally. lus guides the entire process. PegaSvs
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construction of programs. Pictures ,PhysicaLin ROO;R y

may contain on.ly concepts chat are ------------------------------ -----------------

primitive in the form calculus or that TV.(pK,) n.m.(OL,_1(,)

have been defined in terms of the
primitives. PegaSys uses the type con- Figure 4. Constructing a replacement for the line.
straints on predicates to prevent a
nonsensical composition of conce-ts.
For example, if a predicate has been
defined to take two processes as its
arguments, PegaSys ensures that both
arguments are provided and. more- E.l....

over, that both are processes. If not, a 0

type error is signaled. .."...-."-.-..'.: Ab'" ".""r.'

Semantic constraints are needed to ..- :. 1 '

restrict picture refinements and to W ._- A R , w
.W A Add E ty

analyze the relationship between a pic- - -- , - A ct R .

ture hierarchy and the program it is in- S Rev Sd LR 'v S...R.d- " .
;  

Do,.v

tended to describe. In both instances, o. E,,y
E-Pandileer

it is necessary to prove logical for- ". "ars "" . ., •cO o fo " 1 .." ,,

mulas in the form calculus. However, Out k.tO u ,.,t ,_t,, Out P,,, , ,J O,, .i, , sZ. _tt.

this can be done quickly and without .l . . c,.,

user interaction (due in part to the . -o ,

decidability of the form calcuius). ' yp,(pk, ,,r,(Out (t)

Figure 5. Picture at level 2 after refinement of the line.

Hierarchical decomposition of
pictures level in a hierarchy is as follows. As Refinement of an active entity. Re-

soon as the user indicates a desire to call that an active entity is an entity
A hierarchy of pictures related ac- create a new level, PegaSys makes a that has the ability to manipulate data.

cording to the PegaSys design rules is copy of the immediately preceding The active entities in Figure 1 are the
said to describe the design ofa program. level. The new level is formed by a se- host processes and the line module.

quence of refinements to this copy. An The next step in the scenario illustrates

Creating a new level in a hierarchy. individual refinement involves the a refinement technique called active

Each level in a picture hierarchy is a following three steps: (I) selection (by entity refinement-the first, and sim-
description of a program at a par- pointing) of the relation to be refined, plest, of three refinement techniques
ticular level of detail. Alevelis formed (2) construction or selection of its re- employed in the network devel-

by a sequence of refinements to the im- placement. and (3) selection of the ap- opment.
mediately preceding level in the hierar- propriate menu command.* PegaSys Provided the replacement preserves
chy. A refinement adds detail to an ex- checks whether the refinement satisfies interactions involving ,he replaced en-

isting concept and is not allowed to its design rules. tity, PegaSvs allows an active entity to
delete concepts from a picture. There- be replaced by a pic:ure. The three

fore, a concept cannot appear at any steps in an active entity refinement are
level in a hierarchy (except the top one) "hs is a good example of me modeless style of illustrated by Figures 3 through 5. The

unless it is a refinement of a more interaction suoorteo ny PegaSys *n that argu- window at the bottom of the display
abstract concept. rment selection recedes command selection. See (see Figure 3) contains a copy of level

Tesler s aiscussion ,f mtis aoroaci, to man-
The procedure for building a new macnie interfacing. 30  I, where the Line module has been se-
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views (explained below), obviating the Figure 6c describes message trans- design. (Pictures only suggest the
need to study Figure 6a. mission. The sender sends a message semantics of entities by means of

In general, multiple views of the (msg) over the open channel (chan) mnemonic entity names. It is expected,
same picture are used to manage corn- and receives back an indication as to but in no way enforced, that the refine-
plexity or to emphasize particular whether the transmission was suc- ment of an entity provide a more
aspects of a picture. A view in PegaSys cessful. The receiver, on the other detailed description of the computa-
is a single grouping of logically related hand, tells the data packet protocol tion suggested by the entity name.) For
icons from a picture. Views are pres- that the channel called chan is open refinements of interactions, it is possi-
ently constructed interactively by and awaits the arrival of a message. ble to enforce stringent logical re-
structured selection and positioning of The third view, shown in Figure 6c1, quirements-in particular, a refine-
related icons. A more sophisticated describes the interface between a host ment of an interaction must be a more
view mechanism, based on relational and an external network backbone. detailed description of the interaction.
database technology, is planned. This view says that a host reads and For example, if a picture says that an

Two of the views describe the two writes packets by means of subpro- entity "writes" into a particular data
steps in interhost communication- grams Rcv and Snd, respectively. This object, then refinements of the notion
namely, establishment of a communi- interface would be suitable for a vari- of writing must specify one of the pos-
cation link (i.e., a channel) between ety of network configurations, in- sible ways in which writing may occur.
hosts (Figure 6b) and transmission of cluding the line interface in Figure 5. The sequence of steps performed in
an actual message (Figure 6c). In Fig- We will say more about this interface refining an interaction are illustrated
ure 6b, a sender process asks a data later when we "paste" the completed in Figures 7 through 10. The user first
packet protocol to open a channel be- host design into our network. selects a dataflow relation D (see
tween it and another host, (A single Figure 7). Its replacement is con-
host may have multiple open chan- structed by selecting the menu com-
nels.) If the channel is successfully Refinement of an interaction. We mand for adding a relation and then
opened, the variable OK has the value have seen one example of how refine- the Write relation from a pop-up menu
true and chan contains the name of the ments add detail to an existing design (see Figure 8). Note that the dataflow
open channel. If the attempt to initiate concept. In particular, a refinement of relation has disappeared while it is be-
a connection fails, OK has the value an active entity adds detail in the sense ing refined. The Write relation takes
false. The receiver opens a channel in that it syntactically elaborates the enti- three arguments, two of which are
the same manner. ty and preserves interactions in the selected in Figure 8. The two selections

~ ~0 S....V1y~~ 4~ ~ o~.--- ~ Verify-~

, - , , r-. _. . . . _-. . . .T

-r~~~- -14" &;efraLU

"" - .... ef"e Level ei L -
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Figure 7. Selection of an interaction relation for refine- Figere 8. Selection of the Write relation from a pop-up

mert. The letter 0 is an abbreviation for a dataflow relation, menu to replace the dataflow relation selected in Figure 7.
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Figure 13. Associating entities in pictures with program tex!.

ing narne or type to a data object. A I Z.In Figure 11, the user has selected into structures and substructures using
more complex example involves the the type host-pkt (indicated by the the structType relation.
specfication ofhe structureof aglob- bold rectangle), constructed the re- Sometimes it is convenient to refine
al ty-pe. (All tv1 es are global.) It is fined structure (the structType relation an instance of a simple ty-pe into an-
often convenient to specifv different at the present position of the cursor), other simple type, rather than a struc-
instances of ,he same type differently. and entered the pop-up comment ex-
In particular, only the relevant corn- plaining the relation. Figure 12 shows
ponents of a strujctured data object the completed refinement. This reflie- !t le o avoid cuter )n 'he zisciav. simc~e

tyoeS are nIot actually reolaced ty structurea t-Voes
need be speclfied "or each instance of ment of host-pkt into a four-tuple ap- in oictures. For examcie. .',ost .KI'wasntot aCtual-

the object. plies only to the selected instance of Vlace Il1l, the riClure Wh e f0ur-tuDe descflb-
nrg :is structure. However. t 'Me -Jser Z'oifts at

type host-pkt. Components of the host~pt on the arc Detween SerdHoSt_.D"

The refinement of a single instance host-pkt structured type, such as host# an "h oartalv occludeo eiiiDSei 3a Dresses a
Dutton on 'he nouse, Me soec;tiec structure 3

of a type is illustrated in Figures 11 and and pkt-.kind, can be further refined diSolayed (See FigUre 12).
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I Network: Leve (which are described in reference 1)
- and rejoin the session. We are now

,. -. . .ready to implement the host in Ada
s "3-and to verify that its implementation is

logically consistent With the host de-
-pkt . t sign. Programs are written interactive-

. w ,R -w . ly using the PegaSvs structure-oriented
,.>,i. ad 't .i.:- - tkt t .:, -;. .- ,-.' pkt ,-- .:""... --- - ,. -- -- .: .editor; the verification process does

S.,d , c Sd , I . Sd R not require human intervention except
to establish the correspondence be-
tween entities in a picture and program

- od access". mod access mod &c constructs.

:t_. -t t Okt ot Pk C ut P ..,L<g . X Each correspcndence is specified by
S. . . .. " - - two structured selections, one from a

a - picture and one from a program. This
PyIcal ILine

. : -is illustrated in Figure 13, where *he|~ -., ,' -,-. -Z - -'. . . - ' .' -. - -. - - -..' -'. ' - -'.- -
.,- .. - .. .. - I . . - . . . . user has selected an entity called; [-/. .... '. : T pe(p:kt) na~me( utPlkt). -':". .. ... . "- , I u e

L', Znm-.., . , 't, "SendilHostPkt (indicated bv the bold
. - " .. " rectangle) and an Ada program unit

Host: Level Icalled SENDJHSTPACKET (indi-
.. .... ., cated by the underlined text). Issuing

-.- ,.-S r e,, r .the Associate menu command (see the
7ede Peza~-~vs toeceiverrh• h.. .... -.. -.,-.-...-.., ._ .... -,,,. • cursor) causes Pea.,s to record the

,msg . specified association.
-mg 0_ _ .D_ ... . . PegaSys requires that each aomic

~~~~~~_ ~ ot *K '~' ett-i.e., one that is not refined-
~~c an, ~ .~P~~canmust be associated with exactlyv one

program construct. Active entities
Data- 1k,--t, ":) 2, ,,..must be associated with program units

(in the case of Ada, a subprogram,

-". package, task, or generic) and passive
-'. - entities with data object or type

declarations. The kind of an entity
. -_pkt ,.- . .- '.. determines what it can be associated

,with. This association may occur at
.. . . .: .any stage of the development and at

-___.__--__-,_. . ........____....._ _ ........ __ any level in a design hierarchy.
Nonatomic entities are not all/owed

Figure 14. A design is shared through its interface entities, which are connected be asocatith proramlon-
to another design by pointing, to be associated with program con-

structs. We just saw that the type
abstraction called pkt was repiaced by

tured type. This is done if a single type capsulates host packets and contains , ne-pkt and ackpkt. It does not
is ased :o denote a union of types. For an acknowledgment bit (of type seq) make sense to require type pkt to be
exampie, we use :he type pkt in our required by the line-level protocol. An represented in the program, only that
network as an abstraction for two acknowledgment packet is refined into Une-pkt and ack-pkt be represented.
different kinds of packets, a line <host#, host#, seq>.) However, in general, there are situa-
packet and an acknowledgment packet. dons in which it would be desirable to
PeaSv allows us to replace pkt by associate nonatomic entities with pro-
,ine-pkt in one refinement and by Reasoning about programs gram constructs. The association
ack-pkt :n another. (E',entuaily, line would have to be restricted based upon
packet ,ine-pkt is refined into < host#, We omit the development of the re- properties of the refinement history.
hosts. seq, nostpkt >. This packet en- maining levels in the host hierarchy PegaSys maintains this history but
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d'es not as pet pro':!de this capabilitv. Ne wo,' Le'e2

Once a program :c 5:ruct has been
assoct:ate'a ,. ,th e,, ery atomic Cfenntv in a " , .. .----. -

::ral-cn. PfgaSys can attempt to .

pro e :na: the program and the hierar- -- -i
h:v, are .,caiiv -onsistent. That is,. pkt - pt

PegaS. s proes that "he ,'o west 'euei in w FR R w
a hierarchy is oitcallv consistent with pkt Pkt pk
the program it is intended to describe. .

(This does not mean that an entire ISd RCV Sd RCV Snd Rcv
hierarchy :'s consistent with a program. 7
PeeaSvs s1hows :hat e~e. level in a ' mo" access "od accss-
hierarchv foilows from the immediate- . ,t-

"2eedn :e .i Oyai ppainut .Pke COut .Pkt C:TttPkt Out Pkt 'Out_4 kt Cutl

',', precedine :e~eA by valid appications - -------- ------ - -- - . -

of our refinement rules and that the . ,. . . .
.owest e,,ei is consistent with the pro- . .. . ,-.:; PhysicalLine " "

gram :t is intended to describe.) The " .. - y e... " .. .

PegaSvs proof procedure has the fol- -Type(Pki) nare(Cut-Pkt) 7

lowing two important characteristics: ".

(I) properites of nested program unis Figure 15. Hosts are marked to indicate reuse of an extant development.
are :nhented by their parents and ( u)

spec:fled interactions can be satisfied
m a vanety of ways by an implementa-
tion.: Without these considerations,
impractical constraints would be tion), we would like to reuse it four level of the host hierarchy. We want :o
placed on an implementation, times in Figure 5 with minimal redup- replace each of the host entities in the

It should be pointed out that lication of previous work. Below, we network (which are atomic) with the
PegaSvs is actuaily proving that a pic- refer to the presently active develop- entire host hierarchy. Recall from
ture is ,oocai1v consistent with a pro- ment as the primary one and the Figure 6d that a host interfaces with a
gram under a reasonable interpreta- development that we intend to reuse as network backbone by means of the
:'on of the program. PegaSys presently the secondarv one. At this stage of our atomic Snd and Rcv entities. The Snd
assumes that theconsistencybetweena example, the network is primary and and Rcv entities of the host are
picture and the program it is intended the host secondary. We first consider associated (by pointing) with Snd and
to describe does not depend upon cer- reuse of the host design then its im- Rcv of the network, respectively. This
tam properies of its implementation. plementation. pairing is done four times. once for
For example, it assumes that consis- There is a simple, yet useful, way to each reuse of the host. In Figure 1.., the
tency does not depend upon "dead" connect primary and secondary de- user has started the series of pairings
control paths or aliasing of names in signs. An atomic active entity in a by selecting the leftmost Snd sub-
the same context. For the sorts of primary hierarchy may be replaced by pr . the network and the Snd
properties described by pictures in an entire secondary hierarchy pro- subprogram of the host interface."
P egaSys, the assumptions appear to be vided that (1) the atomic active entities Figure 15 snows the final result. A
reasonable and to coincide directly that serve as interface to the secondary double-ringed ellipse has been drawn
xi th our intutive model of what such hierarchy are "matched up" with ac- around the network hosts to indicate
proofs should mean. These assump- tive entities of the primary hierarchy their connection to another design
uon.s. together .ith the de'c:dability of and (2) interactions with the replaced hierarchy.
the form c aculus, enable Pe2aSvs to entity of the pnmary design are pre- Reusabiliry ot an implementation is
fuilv me-chanize con.sistenc,; proots. served (in the same sense as with active achieved by direct shanng of interface

refinements).
Reuse of a hierarchy This procedure is illustrated in "',CIOonot alwavs voN(ut as'orulousv as

n tthis exarnole. in ;:articuiar niertaces oetween
Figure 1.4. The top window shows the Jesigns dco nct alwavslave ,entlca nieract,cns

Ha'. ing completed the host (its lowest level of the network hierarchy, Inthisevent.'t'ssometimesocssiCtet'ontrduce
a iumm y, entit trha serves as an nrerlace :-e-

design. imptemenration, and .erifica- and the bottom one shows the highest tween the -wodesgn ns
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Abstract

A logical technique is presented for approximating the semantic effects of a
change to a software system. The new method uses proofs about a system's
structure to obtain after finitely many steps results that are reasonably close
to optimal. The technique is general enough to apply to implementations and
to formal specifications of abstract design structures, provided that abstrac-
tions are defined in terms of certain predefined primitives. An experimental
implementation has been completed in Prolog.

1 Introduction

Programmers are continually faced with the problem of modifying an existing or
partially developed system. Modifications must be made for several reasons: to
correct erroneous behavior, to increase functionality, to adapt to a new environment,
and to improve a correct implementation. A major difficulty in modifying a system,
especially a large one, is that a seemingly minor change to one part of the system
can have unforeseen and subtle consequences in another part.. As a result, the
incremental cost of modifications is often unacceptably high.

In this paper, we formalize the basic question of whether a change to one system
object can affect another system object, and we present a logical technique for

*Supported by the Naval Ocean Systems Center under Office of Naval Research contract N00014-

86-C-0775 and by the Office of Naval Research under contract N00014-83-C-0300. Author's current
address: Computer Science Laboratory (BN176), SRI International, 333 Ravenswood Avenue, Menlo
Park, CA 94025.

tResearch performed while visiting SRI under Office of Naval Research contract N00014-86--C-
0775. Author's current address: Computer Science Department, University of Washington, Seattle,
WA 98195.



answering a class of questions that can be reduced to instances of this basic question.
Our approach has the following important properties:

" Potential changes are analyzed with respect to any level in system's design,
whether the level contains abstract or concrete objects and connections. Early
feedback on the effects of changes is provided whenever design decisions are
formalized in a certain formal language.

" The semantic effects of a change are inferred from structural properties of
a system. Our approach does not depend upon the presence of behavioral
specifications, which can be difficult to construct. However, it does depend
on the presence of structural information, which can be recorded explicitly by
a programmer or extracted mechanically from the system implementation.

" A good approximation of the objects affected by a change can be found in a
finite number of proof steps. In practice, this means that proofs can be fully
mechanized, which will make it much easier to integrate our formal approach
into everyday software development.

We are aware of no other approach to the analysis of changes that is general,
rigorous, and fully mechanizable.

In this paper, a design is a logical description of how a system is put together,
i.e., its interesting objects and the relevant structural relationships among them.
This view of design focuses on the transition from a (formal) specification of what
a system is intended to do to an implementation that describes how to perform
the specified computation. This what-to-how transformation should be recorded
explicitly because an implementation, especially an efficient one, will invariably be
highly interconnected and somewhat unstructured. Designs will tend to be more
modular and easier to understand, since performance is not as much of a concern.

Each level in a design can contain user-defined relations that denote abstractions
of concrete objects and connections. Typically, an abstraction can be realized in
multiple ways. For instance, "operation" is an abstract object that might be realized
by a concrete procedure or function. The abstract relation "connected to" might be
realized be various combinations of concrete procedure calls and data accesses and
modifications. The lowest level in a design hierarchy directly models the structure
of the implementation; this level can be derived from the implementation using
classical flow analysis techniques. A design can be shown to be logically consistent
with an implementation using the technique in [12].

It is undecidable in general to determine the exact behavioral effects of a change,
but it is possible to obtain a precise, conservative approximation by formalizing the
problem in terms of structural concepts. In particular, we say that a change to
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an object x affects an object y if the pair (x, y) is in the transitive closure of the
"information flow" relation. Unfortunately, information flow is not transitive in the
usual sense. That is, if there is flow from some object x to an object y and from y to
an object z, there is not necessarily flow from x to z. As a consequence, the usual
notion of transitivity gives a crude approximation of the effects of a change. To
obtain a more accurate approximation of the true transitive flows (i.e., those that
would occur when the system is executed), we decompose the concept of information
flow into three special flows and provide axioms for composing the three flows to
determine the transitive closure of the information flow relation.

Since the effects of changes are analyzed in terms of information flows, the flows
that are implicit in a structural specification must be enumerated. For example, if a
concept in a specification is defined in terms of the primitive mod(Px), which says
that variable x is modified by execution of procedure P, we know that there must be
some variable v whose value is assigned to x. Hence, there is an implicit flow from
v to x. Axioms are defined for deriving implicit flows from specifications written in
our language. To substantially reduce the size of a specification, system interactions
that are not intended to occur need not be specified (implicitly or explicitly). These
interactions are dealt with by means of the closed-world assumption [13].

All axioms, specifications, and questions about changes are represented in a
first-order logic restricted to finite models. Consequently, the proofs required to
answer questions contain no infinite search paths. This is a direct consequence of
the decision to take a structural approximation of a semantic property. The same
decision has led to convergent algorithms for program flow analysis in the field of
program optimization [I].

The remainder of this paper is organized as follows. The next section illustrates
the problem that is the focus of the paper and defines it more precisely; the following
section describes related work. Our solution is formalized in Sections 4-7, which
present, respectively, our system model, the axioms for inferring the flows implicit
in structural descriptions, our axiomatization of the transitivity of information flow,
and the logical framework for stating and answering questions about the effects of
changes. Section 8 summarizes our results.

2 Statement of the Problem

To illustrate the problem we address, consider the low-level design presented in
Figure la. The design consists of several objects: procedures Addinc, Add, and
Inc; variables sum, i, a, b, and z; and the constant 1. Parameters are transmitted
using a value-result semantics. The purpose of procedure Addlnc, which is not
specified in the figure, is to add the initial values of i and sum and return the result
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PROCEDURE Addlnc(sum,i)
ASSERT call(Add,(sumi)) AND call(Inc,(i))
END; sum i Addlnc

PROCEDURE Add(a,b) / \
ASSERT affects(a,a) AND affects(b,a) /
END; / /I

PROCEDURE Inc(z) a z Add Inc

ASSERT call(Add,(z,1))
END;

(a) (b) (c)

Figure 1: A low-level design: (a) textual representation, (b) diagram of implicit
information flows, and (c) graph of call relationships.

in sum; it also increments the initial value of i and returns the result'in i.

We are interested, for instance, in whether or not a change to the value of
variable sum can affect the value of variable z. At first glance, there appears to
be a relatively simple way to formalize this question in terms of the concept of
"information flow." Informally, we say that there is information flow from variable
x to variable y, denoted x =>. y, if some change in the value of x affects the value
of y when the program is executed.1 For example, execution of the assignment
statement "b: = a" causes flow from a to b. Since two objects can interact indirectly
through any number of intermediaries, the question is not whether sum ==- z, but
instead it is whether the pair (sum, z) is in the transitive closure of ==> on the set
of all variables, written sum ==* z. 2

We cannot form the transitive closure of ===> until the information flow relation-
ships implicit in the assert statements are made explicit. The assertion for Addlnc
says that it makes two calls, one to Add and one to Inc. (The ordering of the calls
is unspecified for the moment.) The assertion for Add says that the initial values
of a and b affect some future value of a. The assertion of Inc specifies that it calls

1Classical information theory, developed by Shannon [15] and others, is concerned with the
amount of information generated by a particular event. We are interested in the simpler qualitative
question of whether any information is generated by an event. In other words, we are interested in
whether a change affects an object at all, not in how much it affects it.

2 Let S be a set and R a relation on S. Relation R is transitive if "aRb and bRc" implies "aRc"
for a, b, and c in S. Elements a, b, and c need not be distinct. The transitive closure of a relation
R on a set S will be denoted R*. We say that aR*b if there exists a sequence s1 , 2 , ... ,s,. of zero
or more elements in S such that aRs 1 , s1 Rs2 ,... ,sn-IRsr,, sRb.
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Add.
Figure lb depicts the information flow relationships implicit in this structural

description. Flows not in the figure are assumed to be invalid, due to the closed-
world assumption discussed later. For example, it is assumed that there is no flow
in Add from a to b, making b a read-only variable of Add. Procedure calls normally
cause bidirectional flow between actual and formal parameters. However, the two
calls to Add cause only unidirectional flow from actual parameters i and 1 to formal
parameter b, since the value of b is unchanged by Add.

Returning to our original question about the possibility of flow from sum to z,
we can use the diagram Figure lb to trace the information flow path

sum ==# a = z (1)

from which we can infer that sum ==% z. This kind of reasoning can be formalized
in terms of the usual transitivity axiom.

Unfortunately, this simple analysis is much too conservative. A change to the
value of sum cannot affect z if there is no execution sequence for which sum ==* z.
We can establish that there is no such sequence in our example specification by
relating the information flow relationships in the specification to its calling rela-
tionships, which are illustrated in Figure 1c. Consider the call from AddInc to Add.
Procedure Add contains no procedure calls and it does not allow the value of formal
a to affect the value of its other formal b. Therefore, the call from AddInc to Add
can only affect the value of sum by means of the path

sum =* a ==* sum

Procedure AddInc also calls Inc with actual parameter i. But since i is never affected
by sum (by the closed-world assumption), the call from AddInc to Inc cannot result
in a flow from sum to z, from which we can conclude that the call from Inc to Add
cannot either. This completes an informal argument that -'(sum =* z).

The main purpose of this paper is to formalize this kind of reasoning. To do
so, a new axiomatization of the transitivity of information flow is required in which
a transitive flow is inferred from two individual flows only when there is a causal
relationship between the individual flows. That is, we must establish that some
change in the value of variable x in the flow x ==# y causes a change in the value
of variable z in the flow y ==* z before we can infer the transitive flow x ==- z.
Let T denote a logical axiomatization of transitive information flow that takes into
account the causal relationships among individual flows. In addition, let S denote
a structural specification, and let I denote axioms for inferring the flows implicit
in specifications. To reason about changes, we must define T and I so that the
transitive closure of ==*, namely,

{(z,y)I Tu IuS I- X=.y},
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contains the true information flows in S. Moreover, the derivation of the closure
should terminate for any specification S. The transitive closure with respect to a
given specification S serves as the basis for answering a class of questions about
changes to S.

3 Related Work

In practice, the effects of changes are usually determined informally. For example, a
programmer might try to find the effects of a change by studying various relations
extracted from the program itself, such as direct (cross-reference) relations and
transitive relations about calling relationships and data flows. Numerous tools have
been developed which derive such relations, but they are used primarily for other
purposes, such as program optimization [3], the detection of simple errors [4], and
documentation [10]. We are not aware of any existing tool that provides a systematic
way of combining the relations to determine the effects of changes.

Moriconi [11] proposed a formal approach to the analysis of changes that requires
the proof of formulas in an undecidable theory. From a behavioral specification of
a system and a Hoare-style logic, his method determines what formulas must be
proved to isolate the exact semantic effects of incremental changes. The drawback
of this approach is that the effects of most changes cannot be found without sub-
stantial human assistance in proofs. The approach presented in this paper sacrifices
exactness but has the important advantage of logical simplicity.

Recent work by Horwitz, Prins, and Reps [7] on interprocedural program slicing
addresses the related problem of finding all program objects that might affect a
distinguished object. They improve on the interprocedural slicing algorithm of
Weiser [18] by defining a structural approximation of a slice in terms of operations
on an extended program dependence graph. The problem of computing slices is an
instance of the more general problem addressed in this paper. That is, our logical
framework can be used to compute slices involving various kinds of concrete and
abstract objects. For example, the variables x that can affect a specific variable v
is

{(x,v)T u I u S ,- x==>v},

a subset of the closure discussed earlier. If we are interested in program slices, S
consists of those instances of our primitive that are true of the program. A slice
computed using our logical system appears to be as precise as one computed using
the improved algorithm of Horwitz, et al.

Somewhat related is work on configuration management (e.g., [5,17]) that uses
generic dependency relations between compilation units to determine what units
must be recompiled following a change. The dependency relations are not powerful
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enough for system design and a semantic property is not maintained. The goal is
simply to ensure that a system is properly compiled.

4 System Model

Our primitives have been designed for describing a system that consists of a collec-
tion of procedures which communicate by parameters that are passed by value-result
(copy-in/copy-out). A value-result semantics precludes the possibility of aliasing.
We treat only scalar types and assume that objects (procedures, variables, and
constants) have unique names. Modelling additional features, such as structured
types, aliasing, shared global variables,3 and modules, will require some adaptation;
however, we believe that our basic approach is applicable.

The formal system model presented in this section should be distinguished from
a language for writing structural specifications. The system model can be seen as a
common internal representation for a class of specification languages. To illustrate
the difference, consider the call relation in the specification of Figure la. It takes as
arguments the called procedure and the set of actual parameters, whereas the cor-
responding relation in the system model is more verbose, taking as arguments the
calling procedure, the called procedure, the actual parameters, the formal parame-
ters, and the actual-formal pairings. In this paper, we do not propose a structural
specification language; instead, we concentrate on the underlying system model.
Henceforth, a structural specification is taken to be a logical expression in the sys-
tem model unless stated otherwise. The signature of each primitive in the model is
contained in Figure 2.

4.1 Primitive Objects

The basic objects in a design are variables and procedures, which are of type var
and proc, respectively. A special kind of variable, called a version variable, is used
to represent a value of an ordinary variable. Every time the value of an ordinary
variable is changed, a new version variable is introduced. A version variable has
type vvar. The standard mathematical concepts of boolean, finite sets, and finite
sequences are also predefined types.

The version variables that can be used to specify the values of a variable must
be explicitly associated with that variable. To this end, a finite sequence of distinct
version variables is associated with each ordinary variable. The elements of such a
sequence represent the successive values of the associated variable. A sequence for

3 In our present model, global variables can be represented as additional parameters to each
procedure. However, an explicit representation of globals is preferable.
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Primitive Types
var
War
proc

Context
context: name --* type x formals x locals x versions

Primitive Predicates (context argument left implicit)
===>: proc x vvar x vvar - bool
==*: proc x vvar x vvar - bool
==>: proc x vvar x vvar -. bool
callByVR: proc x proc x (vvar x var) n - bool, n > 0
mod: proc x var -+ bool
acc: proc x var -* bool

Figure 2: System Model.

a variable x n'ust contain one element for each rcievant change to x. A specifica-
tion need not distiguish among the different values of a variable. In this event, a
single version variable is used to model all values. Failure to distinguish among the
different values will result in a more conservative approximation of the effects of a
change.

We use the sequence operations first and last to return the first and last element,
respectively, of a finite sequence. We also use functions that, when supplied with an
element of a sequence, return the preceding and the next elements in the sequence.
For an element e of a finite sequence s, the functions

next: vvar -- vvar

and
prey: vvar -+ vvar

are defined by
prev(next(e,s),s) = e

prev(first(s)) = first(s)
next(last(s)) = last(s)

Example 1 The need for version variables can be illustrated by returning to the
design in Figure 1 and asking whether or not z =*: sum. Intuitively, a change in
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the value of z should not affect sum because i must be incremented after it is added
to sum. This means that procedure AddInc should call Add before Inc. Version
variables can be used to specify this ordering.

If order is left unspecified (as in Figure La) and AddInc calls Add before Inc,
the call to Add gives

sum ==* a ==> sum
i = b :=- a => surn

and the call to Inc gives

i == z = a == z =* i

1 == b == a ==ez ==' i

from which we conclude that -(z =4 sum). 4 Reversing the order of calls gives

i ==> z == a ==: z =#- i ==* b =#- a ==* sum (2)

which implies that z = sum.
Figure 3 shows how version variables can be used to achieve the desired ordering

of calls. The key is in the assertion for Addlnc, where the same input value in is
transmitted to both Add and Inc. The value iout returned by Inc is different from
I in and therefore iout can never be transmitted to Add. This is illustrated by the
information flow diagram in Figure 3b in which path (2) cannot occur. We can
trace a path from z to i0,,t, namely,

iin ==> Zin = airn == aout ==€" Zout ===> iout

but there is no path from iout to iin and, hence, no path to sum. El

4.2 Contexts

An object has a name, a type, and possibly certain other properties. For instance, a
procedure object has a name, the type proc, and a set of formal parameters. Objects
are modelled by a function called a context, which would be derived from declara-
tions written in a structural specification language or a programming language.
Contexts are used in the evaluation of logical expressions.

Formally, a context for a specification S is a function

context: names - types x formals x locals x versions

where
4The path i = z = a = sum is not a possibility because there is no causal relationship

between i ==> z = a and a = sum. This would be detected by the transitivity axioms of
Section 6.
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PROCEDURE Addlnc(sum,i) sum in sum out i in out
ASSERT call(Add,(sum_in,i_in)) AND

cali(inc,(i_in))
END: 

PROCEDURE Add(a,b)
ASSERT affects(a_in,a_out) AND

affects(b_in,a_out)
END:

PROCEDURE Inc(z) In out bn in in out

ASSERT call(Add,(zin, 1))
END;

(a) (b)

Figure 3: Using version variables to order calls from AddInc to Add and Inc.

* names is a finite set containing the object names in S,

* types is a finite set containing the primitive and constructed types in S,

* formals is the finite powerset of the set of variables in S, used for recording
the parameter lists of procedures,

* locals is the finite powerset of the set of variables in S, used for recording the
local variables of procedures, and

* versions is a finite set whose elements are the version-variable sequences in S.

A context is fixed for a given specification. In this paper, the context associated
with a specification S is treated as an implicit argument of every predicate in S,
including the primitive predicates. For instance, let C be the context for the spec-
ification under consideration and let the function allprocs, when supplied with a
context, return the set of all procedure names in it. Then, the expression (Vx: proc)
is written as a shorthand for (Vx E allprocs(C)).

The following operations on contexts are used later in the paper. The predicate
versionOf is a mapping vvar x var -- bool that checks whether a version variable
is a version of an ordinary variable. The predicate formalOf (localOf) is a mapping
var x proc --. bool that checks whether a variable is a formal (local) of a procedure.
It is often convenient to ask whether a given variable or version variable is a variable
of a procedure. The predicate

varOf: (var + vvar) x proc -* bool
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is defined by

varOf(x,P) = localOf(x,P) V formalOf(x,P)
varOf(!,P) = (3x:var)[versionOf(!,x) A varOf(x,P)]

where the hat denotes a version variable. The only retrieval operation we will use is
the function versions, which returns the version-variable sequence associated with
a given variable.

Example 2 The declarations in the specification of Figure 3 define a context that
can be represented in tabular form:

name type formals locals versions
Addlnc proc 0 {sum, i} 0

sum var 0 0 (sumi,, SUmot)
sumin vvar 0 0 0
sum°,, vvar 0 0 0

i var 0 0 (iin, iout)
iin vvar 0 0 0
iot vvar 0 0 0
Add proc {a, b} 0 0

a var 0 0 (ain, aout)
ai, vvar 0 0 0
aout War 0 0 0

b var 0 0 (bin)
bin vvar 0 0 0
Inc proc {z} {1} 0

z var 0 0 (zi,,, z ou)

zin vvar 0 0 0
zou vvar 0 0 0

1 var 0 0 (li)
li vvar 0 0 0

Notice that every object has a name and a type. The other properties of an object
depend on its type and the specification itself. A constant, such as the number 1,
is modelled as a variable having exactly one version variable. D

4.3 Directed Information Flow

In our system model, information flows are associated with procedures. Informally,
we say that information flows from a variable x to a variable y under procedure P
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provided a change in the value of x can be conveyed to y when P is executed. For
example, the binding of an actual parameter a to a formal parameter x causes a
flow from a to x.

This concept can be formalized as follows. Let store: id - out model a computer
memory as a mapping of identifiers to their values, and let eval: proc x store -

store be the valuation function for procedures. The infix operation . is a function
store x id -- out that looks up the value of an identifier in a store. The equality
predicate s, E s2 determines whether or not two stores s, and S2 have the same
values for all identifiers except possibly for x. Information is transmitted from a to
b by procedure P if and only if variety in a affects the value of b when P is executed.
Formally,

a =f= b d,=e (3.1,82) S1  s2 A eval(P, sl).b 0 eval(P,s2 ).b

where s1 , S2 in store. This formulation of information transmission is a slight mod-
ification of the formulation originally developed by Cohen [2J for stating problems
in computer security.

For our purposes, it is not enough to know that there is flow between two vari-
ables. In addition, we must know the "directionality" of the flow. Specifically, we
define == to be the logical disjunction of three directed-flow relations: ==*., ==>b,

and ==#-, standing for forward, backward, and lateral information flow, respectively.
Forward and backward flows model the interprocedural variable bindings that result
from a direct or transitive procedure call. Lateral flow is intraprocedural, involving
local variables of the same procedure. Henceforth, x ==:. y is taken to mean that
(x, y) is in any one of the three directed-flow relations. Formally, the relation

==:proc X vvar x vvar --+ bool

is defined by

X :: y de X:=::J y .V X =4f y V X :b y

Notice that for a =f b to be true, neither a nor b can be a constant. For
example, 3 = b cannot be true since 3 contains no variety. Recall, however,
that we decided to model a constant as a variable. More specifically, we model a
constant as a read-only variable, i.e., a variable whose value cannot be changed by
the program. In this model of constants, a question about the effects of an edit
that would replace one constant with another is meaningful and can be answered
without any additional machinery. A read-only variable must satisfy the derived
ReadOnly predicate, which disallows flow to the variable, but allows flow to emanate
from it.
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sum in sum out i. iInnoin

a an'out b in in zin z out

Figure 4: Directed information flows for the AddInc example in Figure 3a.

Example 3 The directionality of the flows seen earlier in Figure 3b is made explicit
in Figure 4. For example, there is a forward flow from sum1 , to ain because the call
from AddInc to Add causes the initial value of actual parameter sum to be bound to
formal parameter a of Add. There is a backward flow from aot to sumout because
the value of a is assigned to the output version of sum upon return of control from
Add to Inc. M

4.4 Additional Primitive Connections

The n-ary callBy VR relation is used to model procedure calls. Its first argument is
a procedure P that directly calls a procedure Q with an arbitrary number of actual-
formal parameter pairs. Each call has a value-result semantics and call chains can
be circular. Sometimes we are not interested in the arguments of a call, in which
case we use the function

dcall: proc x proc -+ bool

which is defined by

dcall(P, Q) = (3 p: plist)callByVR(P, Q, p)

where plist is a set of pairs of type vvar x var, which is the possible actual-formal
pairings in a given context.

The mod and acc predicates are familiar in the field of program optimization [1];
they are also useful in building structural specifications. The relation mod(P, x) says
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that a variable x of procedure P (i.e., x E varOf (P)) can be modified by execution of
P, either directly or transitively through a called procedure. 5 The relation acc(P, x)
says that a variable x can be accessed by execution of procedure P. The mod and
acc relations are not independent of the other primitive concepts; we will show how
they can be defined in terms of flow relations.

4.5 Derived Abstractions

Ordinarily, a system design would not be specified directly in terms of the primi-
tives. It instead would be expressed in terms of abstractions appropriate to each
level of detail. Most abstract objects are represented naturally as primitive proce-
dures or variables which are subsequently "implemented" in terms of one or more
similar objects. On the other hand, most abstract dependencies are best represented
as derived concepts defined in terms of more primitive dependencies. Abstract de-
pendencies are used to partition a system into manageable parts that interact in
well-defined and predictable ways. Several useful derived dependencies are defined
below.

6

Example 4 Protecting a variable. It is often useful to restrict access to a variable
or to restrict the ways in which a variable can be used. For instance, we may want
to allow procedures to read a certain variable but prohibit them from writing it.
This is captured by the predicate

ReadOnly: var -- bool

which is defined by

ReadOnly(x) = -' (3p: proc)mod(p, x)

for x in var. If a variable is required to satisfy this predicate, we can specify
accesses of the variable, but any specified modification to it will be inconsistent
with the above definition. [

Example 5 Restricting variable interactions. A set of variables can be partitioned
into independent subsets using a predicate which says that a variable x is completely

'For optimization purposes, mod and acc usually contain only variables visible at the interface
to a procedure. However, we must also include local variables not visible at the interface.

6 Design dependencies can be stated informally using various program design languages, several
of which are described in a book by Martin and McClure [91. These languages provide a few useful
primitive concepts, but they do not support definitional extensions and their meaning is imprecise
and possibly ambiguous.
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independent of a variable y if and only if a change in the value of y has no effect on

the value of x. This predicate

IndependentOf: var x var -+ bool

is defined, for x and y in var, by

IndependentOf(x, y) 1

(VID:vvar)(VR:proc)[versionOf(!;,x) A versionOf(D,y) D -'( = )

If a variable x is independent of a variable y, we know that y cannot use x as an
intermediary to affect some other variable or procedure. El

Example 6 Interprocedural channel. Suppose that we want two procedurep to
communicate through a specific variable. We say that a variable x is a channel
from procedure P to procedure Q iff information flows from P to Q through x.
This is captured by

ChannelTo: proc x proc x var --+ bool

which is defined by

ChannelTo(P, Q, x) d-

(31, D, : vvar) (3R: proc) [versionOf (1, x) A varOf(D, P) A varOf( , Q) A

((D. = 4f 1 A R A:f ) V (.D =R 1 A 1 A-f ) V (D P V- - A R ))]

for P and Q in proc and x in var. Since x is an interprocedural channel, we need not
consider lateral flows whose purpose is to link interprocedural flows. We also rule
out the possibility of a forward-backward flow, since this would make x a channel
from P to itself. r-

Example 7 Interprocedural partitioning. Assume that a procedure A is not in-
tended to be connected to a I rocedure B, which we express by

-'ConnectedTo(A, B)

The ConnectedTo relation says that, for any procedures P and Q, there is a tran-
sitive call from P to Q, or a transitive information flow from a variable referenced
by P to one referenced by Q, or both. The predicate

Calls: proc x proc - bool
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is defined recursively by

Calls(P, Q) d

(3p: plist)[callByVR(P, Q, p) V
(3R: proc) [callByVR(P, R, p) A Calls(R, Q)]]

where, as before, plist is a set of possible actual-formal pairings. The predicate

ConnectedTo: proc x proc --+ bool

is defined by

ConnectedTo(P, Q) 4--f

Calls(P,Q) V (3,9:vvar)(3R:proc)[varOf(!,P) AvarOf(D,Q) A i =f J

Notice that information may flow from P to Q as the result of a transitive call from
P to Q (in which case R is P), or R can be a parent of P and Q that transmits a
return flow from P to Q. C

5 Inferring Directed Flows

We must identify any implicit flows in a specification before we can apply our
transitivity axioms. The axioms presented in this section can be used to deduce the
flows left implicit in any specification constructed using the primitives.

The first two axioms in Figure 5 allow us to infer directed flows from calls. The
VP axiom handles the situation in which the value of an actual parameter is actually
used by the called procedure. In this event, there is a forward flow from the actual
parameter to the corresponding formal parameter. In the antecedent of the axiom,
af is an actual-formal pair and afpairs (of type plist) is a set of such pairs. The
member operation tests whether a/ is in afpairs. In the consequent, the value of the
expression first(af) is a version variable transmitted as an actual parameter; the
value of first(versions(lasit(af))) is the input version variable for the corresponding

formal parameter.

The RP axiom says that a backward flow from a formal to its corresponding
actual occurs only when the value of the formal is modified during execution. If
it is not, there is no need to return its value and, hence, no backward flow is
necessary. The consequent of this axiom specifies a backward flow from the output
version variable associated with the formal parameter in the pair af to the next
version of the variable transmitted as an actual parameter.

Normally, there is a bidirectionial flow between actuals and formals. The use of
two separate axioms, however, will improve our estimate of the effects of a change
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Value Parameter (VP)

callByVR(P, Q, afpairs) A member(af, afpairs) A acc(Q, last(af))
D first(af) == f first(versions(last(af)))

Result Parameter (RP)

callByVR(P, Q, alpairs) A member(af, a!pairs) A mod(Q, last(af))

D last (versions(last (at)) =Eb next(first(af))

Mod and Information Flow (MI)

mod(P, x) -

(3: vvar) [versionOf (i, x) A
(39:vvar)[(varOf(9,P) A 9 =4 .) V

(3Q: proc) [dcall(P, Q) A varOf(9, Q) A 9 i]]]

Acc and Information Flow (Al)

acc(P, x) -

(3i: vvar) [versionOf (i, x) A
(3D:vvar)[(varOf(,P) A ! =Et ) V

(3Q:proc)[dcall(P,Q) AvarOf(D,Q)^ A = f ]]]

Figure 5: Finding implicit flows. The type of each free variable can be inferred from
the signatures in Figure 2.
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whenever the flow happens to be unidirectional. If a formal parameter is not mod-
ified by the called procedure, there is no return flow. If a formal parameter is used
only to return values, there is no forward flow. If a formal parameter is not used at
all, no flow occurs and none can be inferred using the axioms.

The axioms defining mod and acc are intuitively simple but syntactically com-
plex. Axiom MI says that a variable x is modified by P if and only if a version of x
is modified within P or as a result of a return flow from a called procedure. Axiom
Al says that x is accessed by P if and only if a version of x is accessed within P or
is transmitted by P as an actual parameter. Variable modification and access are

determined by directed flows: if a =. b, then a is accessed and b is modified.

6 Transitivity Using Directed Flows

To accurately track the flow of information, we introduce twelve logical axioms
in Figure 6 that define transitivity for the information flow relation. The axiom
schema at the top of the figure says directional flows are transitive in the usual
sense.

The next four axioms combine directional flows with lateral flows. Lateral flows
among variables of a procedure are "directionless" in that they are used to link
interprocedural flows and to allow interprocedural flow propagation to proceed in
either direction. For instance, Axiom FL says that if a forward flow is followed by a
lateral flow, the overall direction of flow is forward. The direction will stay forward
unless it is changed by a backward flow. Similarly, axiom LF says that a lateral flow
followed by a forward flow results in a forward flow. In both instances, the lateral
flow serves as an intermediate flow connecting to a propagated forward flow.

The BF and FB axioms combine forward and backward flows. Axiom BF says
that if there is a backward flow from a variable x in a called procedure to a variable
y in its caller, and the caller then transmits y forward to variable z through another
call, the resultant direction of flow from x to z is forward.

Axiom FB is somewhat complicated because it must trace a flow emanating
from a call site to the called procedure and back to the same call site. This is
accomplished by the third conjunct in the antecedent. This conjunct contains two
disjuncts, which handle the two situations illustrated in Figure 7. In both instances,
procedure P calls procedure Q and variable y belongs to Q. The first disjunct
(Figure 7a) says that when the value of actual x is transmitted to formal a, Q may
modify the value of a and then transmit this new value back to x. If this occurs,
the next version of x, next(x), is assigned the value. The input value of ai1, can be
transmitted directly or indirectly to ao.t.

The second disjunct (Figure 7b) handles the case in which the value of x affects

18



Lateral-Lateral (LL), Forward-Forward (FF), Backward-Backward (BB)

x E6 y A y Z6 z D x E 6 z, if 6is1, f or b.

Forward-Lateral (FL)

X >fy A y =>1z D X =f±>fz

Lateral-Forward (LF)

x &>, y A y =E~fz x x= >z

B ackward- Lateral (BL)

x -f4 'b y A y =41z D P b Z

Lateral-Backward (LB)

x &>jy A Y/=f=b Z X X=Eb Z

Backward-Forward (BF)

X r=:b y A y = ~fz D x 4Ef z

Forward-Backward (FB)

x =E~ y A Y =E~ z A (3Q: proc) (3a,b: var) [varOf (y, Q) A

QQ
A (y =41 last (versionsOf (a)) V y = last (versionsOf (a)))] V

[sameCall(P, Q, {(z, a), (prev(z), b))) A first (versions Of (a)) ==%., y
A (y =24- last (versionsOf (b)) V y = last (versionsOf (b))) I]

D x =4gZ

Upward flattening (UF)

dcall(P, Q) A x ==Q=6 y D x =45y, if b is f, b, or 1.

Figure 6: Transitivity of ==>. Free variables of type vvar (version-variable) are
indicated by a small letter, of type proc (abstract procedure) by a capital letter.



x next(x)=z x z

a n y - a out a in y b out

(a) (b)

Figure 7: Illustration of the two situations handled by axiom FB.

the value returned to another actual parameter. The derived predicate sameCall is
true if two actual-formal parameter pairs are associated with the same call site. In
axiom FB,

sameC all(P, Q, { (x, a), (prev (z), b)})

is true if actual x of P is associated with formal a of Q and the previous version of
z (the one before the call) is associated with actual b. That is,

sameCall: proc x proc x plist -+ bool

is defined by

sameCall(P, Q, pl) = (3P2: plist) [callByVR(P, Q, P2) A
(Vp: ppair) (member(p, p,) D member(p, P2))]

where ppair is of type vvar x var, an actual-formal pair.
If the premise of axiom FB is satisfied, there is a lateral flow from actual x to

actual z. This has the effect of masking the procedure call, and it permits z to be
propagated in a lateral, forward, or backward flow initiated by P.'

The UF axiom schema, in conjunction with the FB axiom, specifies when in-
terprocedural flows can legitimately be combined. The UF schema allows flows to
be combined only if they occur on control paths emanating from a common pro-
cedure. More precisely, the schema says that a flow resulting from the execution
of procedure Q also results from the execution of procedure P provided P directly
calls Q.

'Axiom FB can be stated more elegantly; the formulation presented in this section was chosen
to mirror the structure of the other axioms as closely as possible.
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Example 8 Returning to Figure 3a, suppose that we want to ask "Does the value
of i affect the value of sum?" To answer this question, we must collect the declared
objects into a context, which was done earlier in Example 2, and translate the
specified connections into predicates in our logic. The translation gives

P1. callByVR(AddInc, Add, (sumi,, a), (i,,, b))
P2. callByVR(AddInc, Inc, (i,,, z))
P3. ai, A41 aout

P4. bi,, =l aot

P5. callByVR(Inc, Add, (Zin, a), (1,,, b))
where the call and affects relations in the figure have been translated into the
calIByVR and =*, relations, respectively. We now use the axioms in Figure 5 to
deduce the following implicit flows; together with P3 and P4, they correspond to
the ten arrows in Figure 4.

P6. SuMin Aln ! ain,

P7. aout Ane b SUmout
•Addnc!

P8. sin bin

P9. in Adzd,,

P10. Zo0 t A= b •out

P12. aout i Zout
P 13. li,. ::M! bin

Given assumptions P1-P13, the answer to our question is provided by the following
formal proof.

1. dcall(AddInc, Add) premise P1, defn. of dcall
2. bin Alg "t aout UF (1, P 4)

3- iin1 ,.xf o FL(P8,2)

4. sameCall(AddIne, Add, premise P1, defn. of sameCall
{ (i, ,b), (sum,,a)})

5. iin A=,I sumot FB(3, P7,4)
The application of the FB axiom in the last step is for the situation depicted in
Figure 7b. E

Example 9 A slightly more difficult question is "Does the input value of i affect its
output value?" The following proof illustrates how the lateral flow in the consequent
of the FB axiom provides a neutral platform for propagating directional flows. Both
applications of the FB axiom are for the situation in Figure 7a.
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1. dcall(Inc, Add) P5, defn. of dcall
2. ai, 2 ao,,t UF (1, P 3)

3. in 4 faout FL(PI1,2)
4. sameCall(Inc, Add, {(zin,a)}) P5, defn. of sameCall
5. z,,, 12-lZo,,t FB(3, P12, 4)

6. dcall(AddInc, Inc) P2, defn. of dcall
7. zi AgTC Zou UF (5, 6)

8. ii, A4 cf Zot FL(P9, 7)
9. sameCall(Addlnc, Inc, {(iin, z)}) P2, defn. of sameCall

10 "i A:l" l iotFB(8,P10,9)

7 Questions, Answers, and the Logic

The special flow axioms, structural specifications, and questions about changes are
all represented in a single logic. Let DDB denote a "design data base" consisting
of finitely many formulas that include a structural specification S, the transitivity
axioms T, and the rules I for inferring implicit flows, all expressed in or translated
into the language £(DDB). C(DDB) is a typed (many-sorted) first-order logic
with equality having the following properties:

1. There are a finite number of constant signs. The constants are pairwise dis-
tinct, and each one denotes a different design object, such as AddInc or sum.

2. The predicate signs are ==f , ==t, ==, mod, acc, and callByVR.

3. The type symbols are var, mar, proc, bool, seq, and set.

4. The well-formed formulas are definite Horn clauses of the form

H 1 A...AHn DC, n>0

where the H, and C are atoms containing no function symbols.8

Definitions introduce new, eliminable symbols and we regard them as additional
axioms. A query Q consists of

1. A declaration of the form zx:tl,.. .,: t,,, and

8The functions used in this paper are total and we know the values for any of their arguments.
There are no Skolem functions because wffs are quantifier free.
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2. An expression of the form

(qjyj: T) ... (qy,: T,) W (Xi , ... , Xn, Yi, ... Ym)

where (qjy,: T) is (Vy,:T) or (3yi:T), the t's and T's are types in L(DDB)
and W(xi,... , Y1,... ,Ym) is a quantifier-free formula in £(DDB) having
free variables X1,... , xn and bound variables yl,. . . , y,.

Before defining what it means for an n-tuple of constants to be an answer to a
query, we should point out that it is not possible to deduce negative information
with the inference system defined above. For instance, in our earlier analysis of the
specification in Figure 3a, we concluded informally that -(sum ==. z). Intuitively,
this is the correct answer. However, it is not possible to infer -'(sum =L z) from a
DDB containing that specification.

Implicit in our informal reasoning was the assumption that all intended flows
were specified and that those that were not specified could not occur. This assump-
tion must be removed or it must be taken into account in the inference system.
The former approach requires that all relevant positive and negative facts about
the system be stated explicitly in the specification. In our domain, the number of
negative facts can far exceed the number of positive ones, making it impractical to
include the negative facts in a specification. The alternative approach is to specify
all positive facts explicitly and modify a traditional first-order inference system to
infer negative facts by default.9 This can be formalized in terms of Reiter's closed-
world assumption (CWA) [13], which says that given a data base DB and an atom
A, if DB / A, then we can infer -'A. Formally, the CWA closure of a DB is defined
by

closure(DB) = DBU {-'P(-)j DB V P(V)}

where each P(e) is a ground atomic formula. The CWA closure is known to be
consistent for definite Horn clauses [16], and any positive or negative atomic query
can be evaluated with respect to it.

An answer to a query can now be defined as follows. An n-tuple of constants
cl,..., c,, is an answer to a query Q with respect to DDB iff

1. cl E t,...,c,, E t,,, and

2. closure(DDB) F- (qjyj: T1 ) ... (qmym:T,) W(cl,. . . ,CY,. ,y,)

It is clearly decidable whether or not an n-tuple of constants is an answer to a
query, since there are only finitely many constants and predicates in the intended

9 Negative facts may be included in a structural specification for expository purposes, but they
can be removed from the DDB because they have no influence on CWA query evaluation.
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interpretation. However, if a design contains a large number of objects, it may
be impractical to evaluate a query using a brute-force approach. The major cause
of inefficiency is the recursive nature of the information-flow axioms. One way to
eliminate the possibility of infinite deductions is to represent certain information
flow relationships explicitly as ground atoms, rather than intentionally as general
facts 114j. But this can require an excessive amount of storage if ground atoms are
stored in the obvious way, e.g., as a set or array of atoms. An open problem is
the development of a time and space efficient decision procedure for computing the
transitive closure of =#. in accordance with our axioms.

The fr,:lowing examples illustrate how to represent questions about variables and
procedures in our logic.

Example 10 Variables. Suppose we are interested in those variables x that are
affected by a change to a given variable v of procedure P. Formally, we can express
this by

(I , ': var) (IR: proc)

IversionOf( ;, x) A varOf (v, P) A versionOf( , v) A ] = ]

The variable x is the only free variable; v and P are logical constants. The formula
says that a variable x is affected by a change to a variable v (of P) if a change to a
version of v can affect a version of x.

Our earlier question about whether sum affects z is an instance of this question.
If we substitute sum for v, AddInc for P, and z for x, we obtain

(31, ): vvar) (3R: proc)

IversionOf(. , z) A varOf (sum, AddInc) A versionOf (0, sum) A 0 . :i]

which is a formal statement of the question. This formula is not entailed by the
closure of the DDB containing the specification in Figure 3. Therefore, by the
CWA, we can conclude that sum does not affect z. El

Example 11 Procedures. Questions about procedures can be reduced to questions
about variables. For instance, if we want to know each procedure Q affected by a
change to a given variable v of procedure P, we write

(Is, 0: vvar) (3R: proc)

[varOf(i, Q) A varOf (v, P) A versionOf (0, v) A 0 =: 1j

This expression says that a procedure Q is affected by a change to v if it has a
variable that is affected by a change to v.
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Similarly, the question of which variables x can be affected by a change to given
procedure P is expressed by

(3, 0: vvar) (3R: proc)[versionOf (_:, X) A varOf (0, P) A 0 = 5]

and the question of which procedures Q affected by a change to a given procedure
P by

(3:, 0:wvvar)(3R: proc)[varOf(5:, Q)A varOf(0,P)A 0 :]

Example 12 Abstract slice. An abstract slice is those variables x that can affect
a given variable v of procedure P, which is the converse of the previous questions.
This concept can be expressed as

(35, D: vvar) (3R: proc)

[versionOf (5:, x) A varOf(v, P) A versionOf (0, v) A D I l

The usual notion of a slice is concerned with the individual statements where vari-
ables are affected. We have chosen procedures, not statements, as atomic objects to
facilitate the design and debugging of large-scale systems. Statement-level objects
are more suited to program merging, for example, which is an important application
of slicing [6]. 0

The logical system and the question-answering technique defined in this section
have been implemented in a version of Prolog that employs the negation as failure
inference rule to infer negative information. A Prolog program is a set of definite
Horn clauses that are executed using a refinement of the resolution principle called
SLD resolution. A branch in an SLD proof tree is called a success branch if the
derivation of the goal succeeds and a failure branch if it fails. A finitely failed
SLD tree is one which is finite and contains no success branches. The negation as
failure rule says that if an atom A has a finitely failed SLD tree for a gien DDB,
then infer -A from that DDB. Since the SLD finite failure set is a subset of the
complement of the success set, the negation as failure rule is less powerful that the
CWA. Nevertheless, it is used for inferring negative information because it is easily
and efficiently implemented. Details on SLD resolution, negation as failure, etc. can
be found in a book by Lloyd [8].
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8 Conclusion

We have presented a general logical technique for isolating the semantic effects of
changes to a software system. The technique applies to structural designs con-
taining predicates built up from our primitives and to implementations having a
classical data flow semantics. The technique improves upon a straightforward in-
formation flow analysis by decomposing the usual information flow relation into
three finer-grain relations, called directed flow relations, and by defining transitiv-
ity of information flow axiomatically in terms of the three relations. The definition
of transitivity involves several mutually recursive axioms.

It is undecidable in general to determine the semantic effects of a change. Con-
sequently, we relaxed the requirement that the results of our analysis be exact
and insisted only that the results be reasonably close to exact and conservative.
By relaxing the exactness constraint, we were able to use structural proofs to ap-
proximate the true semantic effects of a change. This led to a decision procedure
for approximating the effects of changes, which we believe is an important step in
making a formal analysis of changes practical.

However, the direct implementation of our technique in Prolog proved inefficient
for zsystems containing a large number of objects. Further research is needed to
develop a fast algorithm for computing the transitive closure of the information
flow relation from our transitivity axioms.
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